Lecture IV Calibration

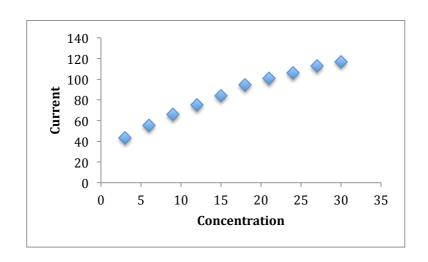
PROBLEM 1 Data from chronoamperometry obtained with a Pt bare electrode (WE diameter 1mm), functionalized with MWCNTs and glucose oxidase, in presence of increasing concentrations of glucose are in the table:

StDev (nA)	Concentration (mM)	Current (nA)
0.15	3	43.35
0.23	6	55.23
0.13	9	65.82
0.17	12	75.13
0.17	15	83.95
0.07	18	94.66
0.53	21	100.91
0.39	24	105.97
0.44	27	112.79
0.28	30	116.97

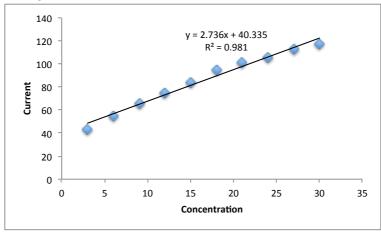
- 1. Plot the data.
- 2. Compute the regression analysis (slope, intercept, R2).
- 3. Plot the residual plot. Is the linear regression appropriate?
- 3. Which is the linearity range?
- 4. Calculate the Sensitivity, defined in the correct linear range.

SOLUTION

1.



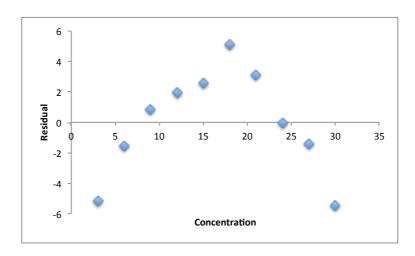
2. Regression Line



Slope = 2.736Intercept = 40.335 $R^2 = 0.981$

3. In regression analysis, the difference between the observed value of the dependent variable (y) (Current) and the predicted value (\hat{y}) (Linear Regression Value) is called the residual (e). Each data point has one residual: Residual = Observed value - Predicted value

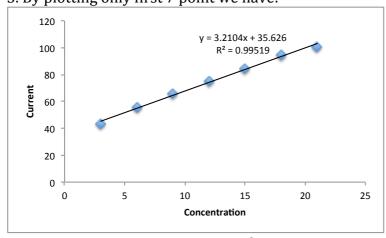
Concentration	Observed Current	Regression Line (Predicted) Y=2.736*X+40.335	Residual= Observed- Predicted
3	43.35	48.543	-5.193
6	55.23	56.751	-1.521
9	65.82	64.959	0.861
12	75.13	73.167	1.963
15	83.95	81.375	2.575
18	94.66	89.583	5.077
21	100.91	97.791	3.119
24	105.97	105.999	-0.029
27	112.79	114.207	-1.417
30	116.97	122.415	-5.445



The residual plot is a graph that shows the residuals on the vertical axis and the independent variable on the horizontal axis. If the points in a residual plot are randomly dispersed around the horizontal axis, a linear regression model is appropriate for the data; otherwise, a non-linear model is more appropriate. The obtained plot pattern is non-random (inverted U-shaped), suggesting a better fit for a non-linear model.

(http://stattrek.com/statistics/dictionary.aspx?definition=Residual%20plot)

5. By plotting only first 7 point we have:



Slope = 3.21Intercept = 35.626 $R^2 = 0.995$

In this case if we redo the residual plot, we will have a random pattern!

So we can define the linear range between 3 and 21mM, with a sensitivity of 3.21 nA/mM

Sensitivity

PROBLEM 2

Compute the sensitivity for hydrogen peroxide detection in chronoamperometry. Consider electrode diameter of 4mm.

Start from the Cottrell equation

$$i = \frac{nFAC\sqrt{D}}{\sqrt{\pi t}}$$

i = current, in unit A

n = number of electrons (to reduce/oxidize one molecule of analyte)

F = Faraday constant, 96'485 C/mol

 $A = \text{area of the (planar) electrode in cm}^2$

C = concentration of the reducible analyte in mol/cm³;

 $D = \text{diffusion coefficient for species in cm}^2/\text{s}$

t = time in s.

For hydrogen peroxide we have

$$H_2O_2 + 2H^+ + 2e^- \Leftrightarrow 2H_2O$$

So n=2. Δt is the time interval between metabolite injection and current-increment measure, that we can approximate as t=5s. For hydrogen peroxide,

$$D = 1.43 \cdot \frac{10^{-5} cm^2}{s}.$$

SOLUTION

The area $A = 0.1256cm^2$. So the theoretical sensitivity is

$$S = \frac{nFA\sqrt{D}}{\sqrt{\pi\Delta t_0}} = \frac{2 \cdot 96485C/mol \cdot 0.1256cm^2 \cdot \sqrt{1.43 \cdot \frac{10^{-5}cm^2}{s}}}{\sqrt{\pi \cdot 5}}$$
$$= 23.12 A \cdot \frac{cm^3}{mol}$$

PROBLEM 3

Compute the theoretical sensitivity for hydrogen peroxide detection in cyclic voltammetry. Consider electrode diameter of 4mm and a scan rate of 100mV/s.

Consider the Randles-Sevčik equation:

$$i_p = 0.4463nFAC\sqrt{\frac{nFDv}{RT}}$$

Where v is the scan rate (V/s), T the temperature in Kelvin, R the gas constant (8.314 VC/Kmol), i_p the peak current. If the solution is at room temperature:

$$i_p = 2.686 \cdot 10^5 \cdot C \cdot n^{3/2} A D^{1/2} v^{1/2}$$

SOLUTION

$$S = \frac{\Delta i}{\Delta c} = 2.686 \cdot 10^{5} \qquad \cdot 2^{3/2} (0.1256cm^{2}) \left(1.43 \cdot \frac{10^{-5} cm^{2}}{s} \right)^{1/2} \left(\frac{0.1V}{s} \right)^{1/2}$$
$$= 114.11 A \cdot \frac{cm^{3}}{mol}$$